
Theory of the Deconfinement
Transition and its Signatures

- Lecture 2 -

Chihiro Sasaki
Institute of Theoretical Physics

University of Wroclaw



Outline

Lecture 1: Brief introduction
Lecture 2: Interacting quarks and gluons
Polyakov-loop model: deconfinement
Nambu--Jona-Lasinio model: chiral SB

Lecture 3: Critical behaviors
Phase transition and the Landau theory
Fluctuations of conserved charges



1. Polyakov-loop model



Hidden global symmetry
QCD Lag. invariant under SU(3) gauge transf.

Consider Ω(x)=Ω₁ as a subset:

Under this transf.

invariant NOT invariant



Hidden global symmetry

All such phases are

When no quarks, the system is invariant 
under the above transfs.
 Z(3) symmetry – discrete and global
In SU(Nc), Z(Nc) symmetry transf. is given by

NOTE: Quarks break this symmetry explicitly.



Z(3) invariants
Polyakov loop

Under gauge transf.
,(n = 0,1,2)

 Z(3) invariants are
 building blocks of 
effective potential



Confinement vs. Z(3)

Free energy of a static quark  [McLerran and Svetitsky]

Confining vacuum:
 Domains of Z(3) phases
 Randomly distributed
 Average to zero

confined,   Z(3) unbroken
deconfined, Z(3) broken



Deconfinement in YM

Effective potential   [Pisarski (2000)]

Introducing T-dep. in b₂ phase transition
Fit to lattice YM-EoS [Ratti et al. (2006)]



Deconfinement in YM
[Figures taken from Ratti et al. (2006)]

minimizing U
gap equation



A little bit more
b₂(T): where T-dep. comes from?  gluons

The entire potential

[Technical details and applications in CS and Redlich (2012)]

1 const. parameter!



With quarks???

How good is the Z(3) symmetry in QCD?
Good symmetry when mq∞

Explicitly broken in QCD:
 Heavy quarks: may be softly broken
 Light quarks: badly broken

(Naïve) implementation as in PNJL/PQM
 Might be risky
 Might be fine when looking at fluctuations?

Cf. Lo, Szymanski, Redlich and CS (2018)



2. Nambu—Jona-Lasinio model



What emerges when mq 0?
Spin projection onto the momentum vector

Mq=0 limit
 No L-R mixing
 Chiral symmetry



Spontaneous symmetry breaking
e.g. complex scalar theory

Global U(1) symmetry and commutators

If μ²>0:

If μ²<0:



Spontaneous symmetry breaking
Goldstone’s theorem: when a global 

continuous symmetry is spontaneously 
broken,  a massless scalar particle emerges.
If a symmetry charge doesn’t annihilate the 

vacuum, non-vanishing VEV emerges:

QCD: pions (mpi = 140 MeV << mrho, mN) as 
approximate NG bosons (mq small but finite)



Consequences as LETs

Partially conserved axial-current

Gell-Mann—Oakes—Renner relation

Goldberger—Treiman relation



Nambu—Jona-Lasinio model

Lagrangian
N-component fermion

U(1)L x U(1)R chiral symmetry

Generating functional



Effective potential

Bosonization
Large N approximation
 leading-order eff. Potential

 k-integral needs to be regulated --- cutoff Λ



Self-consistent equation
Expanding it for a large Λ;

with                              and 
Stationary condition

 If G < Gcr, trivial solution σ₀ = 0
 If G > Gcr, 2 solutions, σ₀ = 0 and σ₀≠ 0
 V(0) > V(σ₀≠0)

Critical coupling



Phase diagram



Putting Polyakov-loops
Lagrangian based on chiral & Z(3)

Covariant derivative

Thermodynamics potential – mimicking conf.

[e.g. Meisinger-Ogilvie, Fukushima, Ratti et al., CS et al., Schaefer et al.]



QCD Phase transition

Modifications of particle properties due to a 
phase transition – critical behaviors
How to quantify them?
 QCD vs. models: the same symmetry
Universality hypothesis: critical behaviors are  

model-independent


