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Lecture plan

1. DIS and BK equation: high energy evolution, TRF view of gluon saturation
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1 Deep Inelastic Scattering in the dipole picture
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DIS kinematics, high energy=small x
How to probe what a proton or nucleus is made of

k
e−

k ′
e−

γ∗

P
p,A

X

s = (k + P)2

q = k − k ′ q2 ≡ −Q2

W 2 = (P + q)2

x =
Q2

2P · q =
Q2

2νmN
=

Q2

W 2 + Q2 −m2
N

(ν = P · q/mN)(
y =

2P · q
2P · k =

W 2 + Q2 −m2
N

sm2
N

)
High energy limit is x → 0

I This is when W 2 →∞ ; ν →∞ ; i.e. the virtual photon-target c.m.s. energy is high.
I Now Q2 is “fixed”. In DGLAP the limit is x fixed, Q2 large (large transverse momentum)

I want to convince you that the γ∗ is the theorist’s favorite hadron!
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Cross sections vs. energy

γ scatters just like p
— apart from extra 1

137

The same should be true for γ∗

PDG cross sections =⇒

10
-4

10
-3

10
-2

10
-1

1

10

10 2

1 10 10
2

10
3

10
4

➚➘
⇓

⇓

⇓
T

ot
al

 c
ro

ss
 s

ec
tio

n 
(m

b)
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

p−(p)p Σ−p

K∓p

π∓p

γp

γγ

√

sGeV



6

DIS in dipole picture BK equation Wilson lines pA collisions Gluon saturation Glasma

Kinematical variables in TRF
TRF = target rest frame

Light cone coordinates
x± = 1√

2
(t ± z)

(Note x⊥ is 2d transverse)

Pµ =
( 0
m,
⊥
0,

z
0
)

=⇒
( +

m/
√

2,
−

m/
√

2,
⊥
0
)

qµ =
( 0

W 2/(2m),
⊥
0,

z√
(W 2/(2m))2 + Q2

)
=⇒

( +

q+,
−

−Q2/(2q+),
⊥
0
)

High energy: q+ ≈W 2/(
√

2m) big
Look at γ∗ wavefunction e−i(q+x−+q−x+)

I Very accurate resolution in x−

I No resolution in x+

Scattering instantaneous in x+ compared to
natural timescale of γ∗

In particular γ∗ cannot change into a hadronic final
state inside proton; it has to fluctuate into hadrons
before.

x−
t

x+

z

γ∗ p
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DIS in dipole picture

Simplest hadronic state in the interacting γ∗ state:
quark-antiquark dipole.

σγ
∗p

T ,L =

∫
d2r⊥ dz

∣∣∣ψγ∗→qq̄(r⊥, z)T ,L

∣∣∣2 2N
σ̂

P

γ∗ z

1− z

rT

High energy: we assume (lifetime/timescale) factorization between

I

∣∣∣ψγ∗→qq̄(r⊥, z)T ,L

∣∣∣2: probability for photon to fluctuate into q̄q dipole: QED process

I N = imaginary part of the forward elastic γ∗-p/A scattering amplitude,
i.e. half the total cross section; optical theorem

Same process in the IMF would look like this
I Formally higher order (NLO DIS)

I Dominates at small x because xg(x ,Q2) is large
I Does not describe valence quarks
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Virtual photon wavefunction ψγ
∗→qq̄

The concept makes sense in the framework of
Light Cone Perturbation Theory: (No time to go very far here)

Outline of LCPT calculation
I Idea: know free particle Fock states: |γ∗〉0, |qq̄〉0, |qq̄g〉0 etc.
I Interacting states are superpositions of these:

|γ∗〉 = (1 + . . . )|γ∗〉0 + ψγ
∗→qq̄ ⊗ |qq̄〉0 + ψγ

∗→qq̄g ⊗ |qq̄g〉0 + . . .

I QM perturbation theory: ground state |0〉 wavefunction correction is

∑
n

〈n| V̂ |0〉
En − E0

|n〉

I Here 1/∆E is ∼ the lifetime of the quantum fluctuation from 0 to n

I In LCPT, “energy” is k−

I Matrix elements 〈n| V̂ |0〉 are vertices in Feynman rules
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Calculating ψγ
∗→qq̄

Need two things to calculate ψγ
∗→qq̄

k , s

k ′, s′

q, ελ

I Matrix element

eūs(k)ε/λvs′(k
′) ; s, s′ = ±1

2
; λ = 0 = L, λ = ±1 = T

I Energy denominator (q− − k− − k ′−)−1

= −
(

Q2

2q+
+

k2
⊥ + m2

2zq+
+

k2
⊥ + m2

2(1− z)q+

)
=

−2q+z(1− z)

Q2z(1− z) + m2︸ ︷︷ ︸
≡ε2

+k2
⊥

Fourier-transform k⊥ → r⊥, sum over spins; result is∣∣∣ψγ∗→qq̄
T

∣∣∣2 =
αe.m.

2π2 Ncef

([
z2 + (1− z)2

]
K 2

1 (εr) + m2
f K 2

0 (εr)
)

∣∣∣ψγ∗→qq̄
L

∣∣∣2 =
αe.m.

2π2 Ncef 4Q2z2(1− z)2K 2
0 (εr)
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DIS dipole frame: summary

I Picture DIS as γ∗ scattering on target
I At high energy (in TRF) γ∗ fluctuates into qq̄

σγ
∗p

T ,L =

∫
d2r⊥ dz

∣∣∣ψγ∗→qq̄(r , z)T ,L

∣∣∣2 2N
∣∣∣ψγ∗→qq̄(r , z)T ,L

∣∣∣2 ∼ exp
{√

z(1− z)Qr
}

I Typical dipole size: r ∼ 1/Q
I Used optical theorem: 2N is total cross section

I can also take |N |2 :connection to elastic scattering (diffractive DIS)
I We are assuming that fixed-size dipoles are the basis that diagonalizes the imaginary

part of the T -matrix
I This makes sense in an eikonal approximation for the scattering
I In general: high energy/eikonal approximation: particles fly through target at fixed x⊥;

Does not imply zero momentum transfer! Rather energy is so high, that momentum transfer
does not change x⊥ during interaction
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2 Balitsky-Kovchegov equation
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What happens if one radiates a gluon?

p, i, s

k ,a, λ

p′ = p − k

j, s′

k+ = zp+

Light cone wavefunction

ψq→qg(z,k⊥) =
1

p2
⊥

2p+ −
k2
⊥

2k+ −
p′⊥

2

2p′+

ūs′(p
′)(−g)ta

ji ε/(k)us(p)

Matrix elements e.g. from Pauli hep-ph/0103106

This is simple in the soft limit z → 0:

ψq→qg(k+,k⊥) =
−2zp+

k2
⊥

−2gta
ji

z
ε⊥ · k⊥δs,s′ “ dPq→qg

′′ =
∣∣ψq→qg∣∣2 dk+ d2k⊥

2k+(2π)3 ∼
dz
z

d2k⊥
k2
⊥

Typical gauge theory logarithmic divergences in emission probability:

soft
dz
z

— collinear
d2k⊥
k2
⊥

(∑
λ=±1

εiε
∗
j = δij

)

http://arxiv.org/abs/hep-ph/0103106
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Soft gluons and large logs, idea of RGE

I Emitted gluons have z between 1 and x ∼ 1/W 2: each gluon contributes ∼ αs ln 1/x
I For x small αs ln 1/x ∼ 1 =⇒ all n gluon emissions contribute same =⇒ resum
I Done by Renormalization Group Equation

y
≡

ln
k+

p
(y

)
γ
∗
(y

)

p
(y

+
∆

y
)

γ
∗
(y

+
∆

y
)

Is the gluon at y a part of γ∗ or of p?

You have to decide! Physical cross section is the same.

σγ
∗p =

gluons up to y are part of proton︷ ︸︸ ︷∣∣∣ψγ∗→qq̄
∣∣∣2
y
⊗ 2N qq̄p

y +
∣∣∣ψγ∗→qq̄g

∣∣∣2
y
⊗ 2N qq̄gp

y + . . .

=
∣∣∣ψγ∗→qq̄

∣∣∣2
y+∆y
⊗ 2N qq̄p

y+∆y +
∣∣∣ψγ∗→qq̄g

∣∣∣2
y+∆y
⊗ 2N qq̄gp

y+∆y + . . .︸ ︷︷ ︸
gluons up to y +∆y are part of proton

Can calculate
∣∣∣ψγ∗→qq̄

∣∣∣2
y
’s =⇒ get differential equation for unknown Ny
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Gluon emission from coordinate space dipole

Let’s put this idea into practice. We will
I Calculate ψγ

∗→qq̄g(z)

I Take soft gluon limit z → 0
I Reabsorb the gluon to become a part of the target
I Get evolution equation for qq̄ cross section

We need:

We can do this with ψγ
∗→qq̄ we already know and and coordinate space

ψq→qg(k+, r⊥) =

∫
d2k⊥
(2π)2 eik⊥·r⊥ψq→qg(k+,k⊥) = −2ip+ 2gta

ji

2π
ε⊥ · r⊥

r⊥2 δs,s′
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Gluon emission from coordinate space dipole

i, x⊥, zq+

j,y⊥, (1− z)q+

r⊥

i, x⊥

j,y⊥

a, z⊥, z′
r′⊥

i, x⊥

j,y⊥

a, z⊥, z′

|γ∗〉int = |γ∗〉+

∫
z,r⊥

C(r⊥)ψγ
∗→qq̄(z, r⊥) |qi(x⊥, z)q̄i(y⊥, 1− z)〉

+

∫
z,r⊥,r′⊥

ψγ
∗→qq̄(z, r⊥)

∫
dz′

4πz′
−i2g

2π
ta
ji

[
(x⊥ − z⊥) · ε⊥

(x⊥ − z⊥)2 − (y⊥ − z⊥) · ε⊥
(y⊥ − z⊥)2

]
|qi(x⊥)q̄j(y⊥)ga(z⊥)〉 ,

Adjust coefficient of qq̄-state to keep wavefunction normalized:

Nc |C(r⊥)|2 = Nc −
(2g)2

(2π)2

1
4π

ta
ij ta

ji

∫
dz′

z′

∫
d2r′⊥

∑
λ=±1

∣∣∣∣ (x⊥ − z⊥) · ε⊥λ
(x⊥ − z⊥)2 − (y⊥ − z⊥) · ε⊥λ

(y⊥ − z⊥)2

∣∣∣∣2
= Nc −

αs

π2

Nc
2 − 1
2

∆y
∫

d2r′⊥
r⊥2

r′⊥
2(r⊥ − r′⊥)2

∑
λ=±1

ε
(λ)
i ε

(λ)∗
j = δij
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Crucial step: move the gluon to the target

Scattering amplitude is N (r⊥) =
∫

d2b⊥N (b⊥, r⊥).
We want equality between scattering amplitudes with gluon in different place:

N y+∆y
qq̄ = N y

qq̄ +
αs

π2

Nc
2 − 1

2Nc

∫ y+∆y

y
d ln 1/z′

∫
d2r′⊥

r⊥2

r′⊥
2(r⊥ − r′⊥)2

[
N ln 1/z′

qq̄g −N ln 1/z′

qq̄

]

Dipole scattering on new target N y+∆y
qq̄ is

I Dipole scattering off original target N y
qq̄

I Dipole emits a gluon into rapidity interval [y , y + ∆y], which
scatters off target

I Normalization of original dipole is corrected (There are now less

dipoles in γ∗)

Almost there
We are looking for an equation for Nqq̄: but enocuntered new quantity Nqq̄g, which needs
to be related to Nqq̄. Will do this in the large Nc approximation
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Gluon at large Nc

I At large Nc =⇒ gluon
= qq̄ pair (not dipole!)

I Nc
2 − 1 gluon colors

≈ Nc
2 quark-antiquark

pair colors.

I Had |q(x⊥)q̄(y⊥)g(z⊥)〉
I Approximate by
|q(x⊥)q̄(z⊥)q(z⊥)q̄(y⊥)〉

ta
ij ≈

i
j

ta
ij

j i

a

≈

j i

i
j

ta
ij

i, x⊥

a, z⊥

j,y⊥

≈ i, z⊥
j, z⊥

i, x⊥

j,y⊥

Now, instead of Nqq̄g, we need Nqq̄qq̄; amplitude for simultaneous scattering of two dipoles.
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Two dipole scattering amplitude

I N is really scattering probability;
I S = 1−N is probability not to scatter

For two dipoles:
I No scattering: neither dipole scatters =⇒ Sqq̄qq̄ = Sqq̄Sqq̄
I Scattering probability Nqq̄qq̄ = 1− Sqq̄qq̄ = 1− (1−Nqq̄)(1−Nqq̄)

Thus we end up with the approximation:

N qq̄g(x⊥,y⊥, z⊥) ≈ N qq̄(x⊥, z⊥) +N qq̄(z⊥,y⊥)−N qq̄(x⊥, z⊥)N qq̄(z⊥,y⊥)

and our equation is

N qq̄
y+∆y = N qq̄

y +
αs

π2

Nc
2 − 1

2Nc

∫ y+∆y

y
d ln 1/z′

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

×
[
N qq̄

ln 1/z′(x⊥, z⊥) +N qq̄
ln 1/z′(z⊥,y⊥)−N qq̄

ln 1/z′(x⊥, z⊥)N qq̄
ln 1/z′(z⊥,y⊥)−N qq̄

ln 1/z′(x⊥,y⊥))
]

Differentially for infinitesimal ∆y , and with large Nc

∂yN (r⊥) =
αsNc

2π2

∫
d2r′⊥

r⊥2

r′⊥
2(r′⊥ − r⊥)2

[
N (r′⊥) +N (r⊥ − r′⊥)−N (r′⊥)N (r⊥ − r′⊥)−N (r⊥)

]
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Summary

Balitsky-Kovchegov equation (∼1995)

∂yN (r⊥) =
αsNc

2π2

∫
d2r′⊥

r⊥2

r′⊥
2(r′⊥ − r⊥)2

[
N (r′⊥) +N (r⊥ − r′⊥)−N (r′⊥)N (r⊥ − r′⊥)−N (r⊥)

]
This is the basic tool of modern small-x physics.

I Given initial condition N (r⊥) at y = y0 the equation predicts the scattering amplitude
at larger y = smaller x = higher

√
s.

I Drop nonlinear term: BFKL equation
I Divergences at r′⊥ → 0 and r′⊥ → r⊥ regulated because N (0) = 0 due to color neutrality.
I Enforces black disk limit (unitraity) N < 1
I For practical work coupling αs should depend on distance: some combination of

r⊥, r′⊥, r⊥ − r′⊥
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What the solution of BK looks like

The equation can be solved numerically

I Small dipoles r . 1/Qs scatter very little
At r = 0 color neutral system, should not scatter by
the strong interaction!

I Large dipoles r & 1/Qs scatter with probability
almost one, but not more. Saturation

Remember, for the DIS F2, FL convolute this with the
(known) γ∗ wavefunction.

σγ
∗p

T ,L =

∫
d2b⊥ d2r⊥ dz

∣∣∣ψγ∗→qq̄(r , z)T ,L

∣∣∣2 2N (r⊥,b⊥, x)

Fits HERA data (x < 0.01 Q2 moderate) extremely well
(b-dependence modeled with varying degrees of sophistication)

0.01 0.1 1
rΛ

QCD

0

0.2

0.4

0.6

0.8

1

N

k √ α
s

r √ α
s

y = ln 1/x

x

(Actually cheating, this plot is a solution of

JIMWLK, which generalizes BK)
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3 Eikonal propagation in target color field
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What is the target made of?

I So far we have not specified anything about the degrees of freedom in the target.
I We will srgue that at high energy the target consists dominantly of gluons

I We know that at small x the gluon distribution is larger than the quark one.
I BK equation builds up the target by adding gluons to it.

Color Glass Condensate (CGC)
We assume that there are so many gluons in the target, that it can be described by a
classical gluon field. This is the heart of the CGC effective theory.

Many gluons = large color field Aµ
Have to sum all diagrams with n gluons lines
— but we can assume the gluons are a classical field

A
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What is the target made of?

A

pµ
Quark propagating in classical color field: Dirac equation!

(i∂/− gA/)ψ(x) = 0

(Note: A/ = Aµ
a γµta is Nc × Nc-matrix )

Want to dig out the dominant contribution: eikonal approximation
I Gluon is spin 1: it couples to a vector: ∼ pµAµ
I For high energy particle the only momentum available is pµ
I pµ has one large component: p+ =⇒ pµAµ ∼ p+A− =⇒ only need A−

Ansatz for DE: ψ(x) = V (x)e−ip·xu(p), plug into equation Nc × Nc-matrix!

=⇒ ∂+V (x+, x−, x⊥) = −igA−(x+, x−, x⊥)V(x+, x−, x⊥)

This is solved by path-ordered exponential

V (x+, x−, x⊥) = Pexp

{
−ig

∫ x+

dy+A−(y+, x−, x⊥)

}
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Eikonal propagation

I Now we know how a high energy quark propagates in a classical field.
I Thus we know the scattering S-matrix element for many-quark states

E.g. for a quark the time evolution operator is

Ŝ (x+ = −∞→ x+ =∞) |q(i, x⊥)〉 =

[
Pexp

{
−ig

∫ ∞
−∞

dy+A−(y+, x−, x⊥)

}]
ji

|q(j, x⊥)〉

=⇒ quark becomes linear superposition of quarks at same x⊥, different color states.
I In scattering problem integrate x+ ∈ [−∞,∞]

I In the high energy limit quark wavefunction oscillates like eip+x− with large p+

=⇒ x−-dependence negligible compared to this =⇒ approximate x− = 0

Scattering is described by 2-dimensional field of SU(Nc)-matrices

V (x⊥) ≡ Pexp
{
−ig

∫ ∞
−∞

dx+A−(x+, x− = 0, x⊥)

}
This is the Wilson line
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Dipole amplitude and Wilson lines

Incoming dipole (color neutral, average over colors!) becomes

Ŝ
δij√
Nc
|qi(x⊥)q̄j(y⊥)〉 =

δij√
Nc

Vi′ i(x⊥)V ∗j′ j(y⊥)
∣∣q′i (x⊥)q̄j′(y⊥)

〉
=

1√
Nc

[
V (x⊥)V †(y⊥)

]
i′ j′
|qi′(x⊥)q̄j′(y⊥)〉

The total cross section is related to the imaginary part of the forward elastic scattering
amplitude; i.e. project out dipole in outgoing state

δk`√
Nc
〈qk (x⊥)q̄`(y⊥)| Ŝ δij√

Nc
|qi(x⊥)q̄j(y⊥)〉 =

1
Nc

Tr
[
V (x⊥)V †(y⊥)

]
Dipole amplitude in the CGC
Relate N in BK and DIS to a microscopical description of the target:

Nqq̄ = 1− 1
Nc

Tr V (x⊥)V †(y⊥)

Note Sfi = 〈f | Ŝ |f 〉 = 1 + iTfi σtot = 2ImTii N ≡ ImTii Sii = δii −N + imag
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More complicated operators

I The dipole amplitude is a target expectation value of a two-point function

Nqq̄ = 1−
〈

D̂
〉

=

〈
1− 1

Nc
Tr V (x⊥)V †(y⊥)

〉
target

I For this we derived the BK equation using a mean field approximation
〈

D̂D̂
〉
≈
〈

D̂
〉〈

D̂
〉

I Similarly define other correlators, such as
〈

D̂D̂
〉

or the quadrupole

Q =

〈
1

Nc
Tr V (x⊥)V †(y⊥)V (u⊥)V †(v⊥)

〉
target

,

and the corresponding evolution equations.
I Without the mean field approx. these operators couple to each other

(e.g. ∂y

〈
D̂
〉
∼
〈

D̂D̂
〉

) the Balitsky hierarchy of evolution equations

I The hierarchy can be generalized into an evolution equation for the probability
distribution of Wilson lines — the JIMWLK equation
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From BK to JIMWLK

JIMWLK equation
Gives rapidity-dependence of probability distribution of Wilson lines

∂yWy [V (x⊥)] = HWy [V (x⊥)]

H ≡ 1
2

∫
x⊥y⊥z⊥

δ

δA−c (y⊥)
e⊥ba(x⊥, z⊥) · e⊥ca(y⊥, z⊥)

δ

δA−b (x⊥)
,

e⊥ba(x⊥, z⊥) =
1√
4π3

x⊥ − z⊥
(x⊥ − z⊥)2

(
1− V †(x⊥)V (z⊥)

)ba

You can derive this in a very similar way as we did for BK.
I Assume there is a y-dependent probability distribution Wy [U(x⊥)]

I Consider collection of n Wilson lines propagating through target
I Emit one extra soft gluon and absorb small-z divergence into redefinition of probability

distribution: Wy [V (x⊥)]→Wy+∆y [V (x⊥)]
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4 Particle production in pA
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Nuclear modification factor RpA

Comparison of ALICE data on particle production in pA and pp to some theory predictions
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DHC, no shad.

DHC, no shad., indep. frag.

There are two ways to calculate this in the CGC
kT -factorization Good at midrapidity/symmetric situation with strong color fields in both

colliding objects. This we will come to a bit later.

Hybrid formalism One colliding object described as dilute collection of partons =⇒ good
at forward rapidity. Let us first understand this.
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Dilute-dense scattering

Look at forward rapidity pA

I The produced particle has large p+.
I Momentum conservation:

large p+ needs to come from large x parton in proton
I At large x proton = dilute collection of valence quarks

=⇒ quark scattering on dense target

In: quark with momentum q+,q⊥, color i

|in〉 =

∫
d2x⊥e−iq⊥·x⊥ |q(i, x⊥)〉

After interaction with the target

Ŝ |in〉 =

∫
d2x⊥e−iq⊥·x⊥Vji(x⊥) |q(j, x⊥)〉

p

A

qµ
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Scattering amplitude

|in〉 =

∫
d2x⊥e−iq⊥·x⊥Vji(x⊥) |q(j, x⊥)〉

Amplitude: quarks with momentum p⊥ in the final state
(Should also subtract the 1 in S = 1 + iT , but this is a δ-function)

p

A

qµ pµ

Mi,q⊥→k,p⊥ = 〈q(k ,p⊥)| in〉 =

∫
x⊥,x̄⊥

e−i(q⊥·x⊥−p⊥·x̄⊥)Vji(x⊥)

δ2(x̄⊥−x⊥)δkj︷ ︸︸ ︷
〈qk (x̄⊥)| q(x⊥)j〉

Incoming quark is collinear q⊥ = 0
dσ

d2p⊥
=

1
Nc

1
(2π)2

∑
i,k

|Mi,q⊥→k,p⊥ |
2 =

1
Nc

1
(2π)2

∫
x⊥,y⊥

e−ip⊥·(x⊥−y⊥) Tr V (x⊥)V †(y⊥)

There are xq(x , µ2) incoming quarks in the proton per unit rapidity.

Hybrid formula for quark production

dσ
d2p⊥ dy

=
1

(2π)2 xq(x , µ2)
1

Nc

∫
d2x⊥ d2y⊥e−ip⊥·(x⊥−y⊥) Tr V (x⊥)V †(y⊥)
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Back to RpA

dσ
d2q⊥ dy

=
1

(2π)2 xq(x , µ2)

× 1
Nc

∫
x⊥y⊥

e−iq⊥·(x⊥−y⊥) Tr V (x⊥)V †(y⊥)

Now all we need is a parametrization, for
protons and nuclei of
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I Fit to HERA data =⇒ proton dipole amplitude
I using BK equation (remember: BK gives x-dependence, need to fit initial condition)
I or some other model of the dipole cross section (IPsat)

I Generalize to nuclei: somehow incorporate Woods-Saxon TA(b)
I rcBK-MC and rcBK are different implementations of this

I The HERA data is very precise and (LO) theory fits it well: the “theory errors” in the above
plot are all from this proton =⇒ nucleus generalization.
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From protons to nuclei

One typical initial condition for BK: GBW Golec-Biernat, Wusthoff:

N (b⊥, r⊥) = θ(Rp − b)

(
1− exp

{
− r⊥2

4Qs,p
2

})
, and for nucleus?

1. Just fit Qs,A separately to some nuclear data
2. Assume saturation scale Q2

s ∼ TA(b⊥) or A1/3 — but with what coefficient?
3. MC Glauber, NN overlapping nucleons and (Qs,A)2 = NN (Qs,A)2 — Fine, but what is

nucleon area for calculating NN? Same as in DIS? Same as in Glauber? (These are different!)

One has to be careful (I’m being nasty showing these celebrated plots)
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Differences mostly from nuclear geometry, not in the CGC theory
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Another interesting observable forward dihadron correlations in dAu
Two particle correlation vs. ∆ϕ :
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http://arxiv.org/abs/1102.0931
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Another interesting observable forward dihadron correlations in dAu
Two particle correlation vs. ∆ϕ :
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Calculating 2-particle correlation in forward pA
C. Marquet Nucl. Phys. A 796 (2007) 41; [arXiv:0708.0231 [hep-ph]].

I Quark from p (large x) from pdf, radiate gluon
=⇒ light cone wave function

I Eikonally through target =⇒ Wilson lines
I Fundamental reps V (x⊥) for quark
I Adjoint reps U(x⊥) for gluon =⇒ Fierz

I Need target exp. values of Wilson line operators
— from JIMWLK (or an approximation thereof)

p

A

kµ

qµ

dσqA→qgX

d3q d3k
∝
∫

x⊥,x̄⊥,y⊥,ȳ⊥

[
· · ·
]〈

Q̂(y⊥, ȳ⊥, x̄⊥, x⊥) D̂(x⊥, x̄⊥)−D̂(y⊥, x⊥)D̂(x⊥, z̄⊥)+. . .

〉
target

(z⊥ = zx⊥ + (1− z)y⊥, z̄⊥ = zx̄⊥ + (1− z)ȳ⊥; [· · · ]= calculable LC wavefunction squared)

“Dipole” and “Quadrupole” operators

D̂(x⊥ − y⊥) ≡ 1
Nc

Tr V (x⊥)V †(y⊥) Q̂(x⊥,y⊥,u⊥, v⊥) ≡ 1
Nc

Tr V (x⊥)V †(y⊥)V (u⊥)V †(v⊥)
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5 Gluon saturation and the CGC
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Classical field and equation of motion

I We were describing the high energy nucleus as a classical field: A− =⇒ Wilson line
I What does this imply for the partonic content of the nucleus?
I The physical picture of “gluons as partons” requires two things:

I Infinite momentum frame: nucleus moving fast
change direction: nucleus moves now in +z-direction with large p+, large A+

I Light cone gauge: have to gauge transform to A+ = 0
I CGC EFT based on separation of scales:

I small x : classical field
I large x : classical color charge

Classical ≡ equation of motion

[Dµ, Fµν ] = Jµ

What remains is
∇2
⊥A+ = J+

This is nice, color current in +-direction causes big A+-field.

t

z

x+

j+
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Spacetime structure of the field

The current lives on the light cone.

1. Naive explanation: Nucleus is Lorentz-contracted
to ∆z ∼ 2RAmA/

√
s

2. Real explanation: Current represents large x
degrees of freedom

I Current: large p+; field: small p+

I Current more localised in x− than field.

The current is independent of LC time x+: glass!
Argument as above:

1. Naively: time is dilated for the nucleus

2. Any probe will have larger k− than color current
=⇒ probe oscillates faster in x+ and sees current
as static (in LC time x+).

t

z

x−
x+

j+,A+

Extreme approximation:

j+(x−, x⊥) ≈ δ(x−)ρ(x⊥)

A+(x−, x⊥) ≈ δ(x−)
1

∇2
⊥
ρ(x⊥)
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Classical field and equation of motion

Now let us gauge transform.

A+ ⇒ V †(x⊥, x−)A+V (x⊥, x−)− i
g

V †(x⊥, x−)∂−V (x⊥, x−) = 0

A− ⇒ − i
g

V †(x⊥, x−)∂+V (x⊥, x−) = 0, still

Ai ⇒ i
g

V †(x⊥, x−)∂iV (x⊥, x−) transverse pure gauge

This is solved by familiar Wilson line

V (x⊥, x−) = Pexp

[
−ig

∫ x−

dy−A+

]

Now
Ai ∼ θ(x−)

— delocalized in x−, just like small k+ physical gluons
should be.

t

z

x−
x+

A+
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Weizsäcker-Williams gluon distribution

In LC quantization LC-gauge gluon field Ai
a(k⊥) =⇒ number distribution of gluons:

dN

d2k⊥ dy
∼
〈

Ai
a(k⊥)Ai

a(−k⊥)
〉

Ai =
i
g

V †(x⊥, x−)∂iV (x⊥, x−)

I DIS cross section, BK =⇒ Wilson line =⇒ gluon distribution
I One can express this Weizsäcker-Williams gluon distribution as:

dN

d2k⊥ dy
= ϕWW(k⊥) =

CF

2π3

1
αs

∫
d2b⊥

∫
d2r⊥

eik⊥·r⊥

r⊥2 Ñ (b⊥, r⊥)

(Ñ is the adjoint representation Wilson line correlator)

I Gluon saturation in ϕWW(k⊥) at k⊥ . Qs

I ϕWW(k⊥) ∼ 1/αs =⇒ “condensate” of gluons

Now we have a Color Glass Condensate.
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McLerran-Venugopalan model
L. D. McLerran and R. Venugopalan, Phys. Rev. D 49 (1994) 2233 & Phys. Rev. D 49 (1994) 3352

I Useful: explicit 1-parameter model for ρ(x⊥, x−) =⇒ easy to calculate
I Formally large A limit: independent valence-like color charges, CLT =⇒ Gaussian

MV model for charge density ρ(x⊥, x−)
I Stochastic, Gaussian random field
I Local in x− (infact very general) and x⊥ (can be generalized)

〈
ρa(x⊥, x−)ρb(y⊥, y−)

〉
= g2δabµ2(x−)δ(x− − y−)δ(2)(x⊥ − y⊥)

Calculate e.g. dipole cross section =⇒ identify saturation scale

1
Nc

〈
Tr V (x⊥)V †(y⊥)

〉
= exp

{
−g4CF

8π

[∫ ∞
−∞

dx−µ2(x−)

]
r2 ln

1
rΛ

}
=⇒ Q2

s ∼
g4CF

4π

[∫ ∞
−∞

dx−µ2(x−)

]
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6 Heavy ion collisions and the glasma initial state
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Gluon fields in AA collision

Now two colliding nuclei =⇒ two color currents

Jµ = δµ+ρ(1)(x⊥)δ(x−) + δµ−ρ(2)(x⊥)δ(x+)

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges from Wilson lines of 2 nuclei

Ai
(1,2) =

i
g

V(1,2)(x⊥)∂iV
†
(1,2)(x⊥)

At

τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

For τ > 0 solve numerically
This is the glasma field

=⇒ Then average over ρ.
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Gluon fields in AA collision

Now two colliding nuclei =⇒ two color currents

Jµ = δµ+ρ(1)(x⊥)δ(x−) + δµ−ρ(2)(x⊥)δ(x+)

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges from Wilson lines of 2 nuclei

Ai
(1,2) =

i
g

V(1,2)(x⊥)∂iV
†
(1,2)(x⊥)

At τ = 0:

τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

For τ > 0 solve numerically
This is the glasma field

=⇒ Then average over ρ.
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Gluon fields in AA collision

Now two colliding nuclei =⇒ two color currents

Jµ = δµ+ρ(1)(x⊥)δ(x−) + δµ−ρ(2)(x⊥)δ(x+)

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges from Wilson lines of 2 nuclei

Ai
(1,2) =

i
g

V(1,2)(x⊥)∂iV
†
(1,2)(x⊥)

At τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

For τ > 0 solve numerically
This is the glasma field

=⇒ Then average over ρ.
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Result: glasma field

.
.

.

..

.

.

.

.

..

.
.. .

. .

.
.

. . ..

.
.

.

I τ = 0+: longitudinal E and B field,
I Depend on transverse coordinate with

correlation length 1/Qs

=⇒ gluon correlations

Gauss law and Bianchi: (here i = 1 . . . 3)[
Di , E

i] = 0[
Di ,B

i] = 0

Separate nonabelian parts:

∂iE
i = ig[Ai , E i ]

∂iB
i = ig[Ai ,Bi ]

Effective E and M charge densities,
Arising of interaction between pure
gauge potential of one nucleus and the
E/M field of the other
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Deriving the initial condition

Let’s work in Fock-Schwinger/temporal gauge Aτ =
(
x+A− + x−A−

)
/τ = 0

=⇒ consistent with LC gauge solutions for both nuclei.

Ansatz: Ai =

known︷ ︸︸ ︷
A(1)

i θ(−x+)θ(x−) + A(2)
i θ(x+)θ(−x−) +A(3)

i θ(x+)θ(x−)

A± = ±θ(x+)θ(x−)x±Aη

Insert into [Dµ, Fµν ] and match coefficients of

I δ(x+)δ(x−) =⇒ A(3)
i |τ=0 = A(1)

i + A(2)
i

I δ(x+)θ(x−) =⇒ Aη|τ=0 = ig
2

[
A(1)

i ,A(2)
i

]
H

Initial condition for region (3)

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.
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Boost invariant time evolution

Time evolution for field components
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Boost invariant time evolution

Time evolution for field components
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Boost invariant time evolution

Time evolution for field components
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Gluon spectrum in the glasma

I CYM equations can be solved
numerically on the lattice.

I Decompose solution in Fourier k⊥-modes:
gluon spectrum

Qs is only dominant scale

Parametrically
dNg

dy d2x⊥ d2p⊥
=

1
αs

f
(

pT

Qs

)
Note: Qs depends on y/

√
s

With full nonlinear CYM integrable spectrum

Here: Wilson lines from JIMLWK
T.L. Phys. Lett. B 703 (2011) 325
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p T

2  d
N

/d
2 p T
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y = 1.30
y = 2.59
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(Here: y is the amount of evolution:
y = 0 is MV model initial condition.

At midrapidity, y ≡ ln
√

s/s0)
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Dilute limit and kT -factorization

Equations of motion solvable in the dilute limit; (This is a CGC theorist’s “pp collision”)

Linearized equations are wave equations (Recall A± = ±x±Aη ; Aη = −τ2Aη)(
τ 2∂2

τ + τ∂τ + τ 2k2
⊥

)
Ai(τ,k⊥) = 0(

τ 2∂2
τ − τ∂τ + τ 2k2

⊥

)
Aη(τ,k⊥) = 0.

=⇒ Ai(τ,k⊥) = Ai(τ = 0,k⊥)J0(|k⊥|τ) Aη(τ,k⊥) = − 1
τ |k⊥|

Aη(τ = 0,k⊥)J1(|k⊥|τ).

I These are (boost invariant) plane waves =⇒ interpret as particles, gluons.
I Initial fields related to Wilson lines, and thus the unintegrated gluon distribution ϕ(kT )

Number spectrum in the dilute limit: kT -factorization formula. (Note: now not integrable)

dN

dy d2k⊥
=
αs

S⊥
2

CF

1
kT

2

∫
d2q⊥ϕdip(q⊥)ϕdip(|k⊥ − q⊥|).

This calculation can also be repeated by assuming that one of the two colliding objects is
dilute (Theorist’s “pA”) — It does not work in “AA”
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CYM vs. k⊥-factorization

I In fact, also in “AA” the kT -factorization formula works for high pT

I Sometimes people also use kT -factorization with different cutoffs
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0
5e

-0
5

0.
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pA: k⊥-factorization works
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k2  d

N
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2 k
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T
-fact

k
T
-fact w/ cutoff

AA: kT -factorization only for large pT

(Here one proposed cutoff scheme dN
d2p⊥ dy

= 1
αs

1
p2
⊥

∫
k⊥

[
θ(pT − kT )

]
φy (k⊥)φy (p⊥ − k⊥) )
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Back to RpA
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Theory predictions here: fragmentation function for g →hadrons + kT -factorization formula:

dN

dy d2k⊥
=
αs

S⊥
2

CF

1
kT

2

∫
d2q⊥ϕdip(q⊥)ϕdip(|k⊥ − q⊥|),

I Can also rederive hybrid formula from this, in limit Qs,A � Qs,p, i.e. |k⊥ − q⊥| � |q⊥|
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Conclusions

I Recall conceptual chain here: DIS =⇒ Wilson line =⇒ Glasma fields:
energy-momentum tensor and gluon spectrum at initial stages of heavy ion collision

I What then? Configuration very anisotropic: need to go beyond strict classical field limit
I Plasma instabilities
I Thermalization in kinetic theory “bottom-up”

I Practical applications?
I Need transverse geometry from exclusive DIS (see Nestor’s lectures)
I IPglasma takes “IPsat” parametrization of dipole cross section + MV model

=⇒ CYM numerics, matching energy density to hydrodynamics
I Further topics:

I Multigluon correlations, initial state ridge correlation (pp, pA) . . .
I Overoccupied fields =⇒ Chern-Simons charge, chiral magnetic effects . . .
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