

Indian Summer School of Physics

Phenomenology of Hot and Dense Matter for Future Accelerators Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague, September 5th-7th 2018

Hadron structure phenomenology at an EIC

Néstor Armesto Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela

nestor.armesto@usc.es

DE SANTIAGO DE COMPOSTELA

I. Basics of DIS.

- 2. Determination of (n)PDFs.
- 3. Inclusive and exclusive diffraction.

4. Spin.

- 5. Small-x physics in DIS.
- 6. Outlook.

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].
- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

Contents:

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.

- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].

- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].

- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

DIS: proton substructure

→ Let us compare elastic scattering (x=1) on a pointlike s=1/2

particle with that on a proton and the inelastic one (for $x \sim O(1)$):

→ For fixed x, $F_{1,2}$ roughly independent of Q (note 1/Q⁴ behaviour of proton form factors): Bjorken scaling, pointlike scatterers. → $2xF_1=F_2$: Callan-Gross relation, spin-1/2 scatterers.

DIS: proton substructure

DIS: basics

→ Consider the process of lepton (e, μ , ν) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared: $W^2 = (q + p)^2$ inelasticity

 $y = \frac{p \cdot q}{p \cdot k}$

 $\begin{array}{l} \text{Bjorken x} \\ x = \frac{-q^2}{2p \cdot q} \\ \text{(minus) photon virtuality} \\ Q^2 = -q^2 \end{array}$

F₁, **F**₂:

structure

functions of

the hadron

→ For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2\sigma}{dQ^2\,dx} = \frac{4\pi\alpha^2}{Q^4x} \left[(1-y)F_2(x,Q^2) + xy^2F_1(x,Q^2) \right]$$

DIS: basics

→ Consider the process of lepton (e, μ , ν) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared: $W^2 = (q + p)^2$ inelasticity

 $y = \frac{p \cdot q}{p \cdot k}$

Bjorken x $x = \frac{-q^2}{2p \cdot q}$ (minus) photon virtuality $Q^2 = -q^2$

→ For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2\sigma}{dQ^2\,dx} = \frac{4\pi\alpha^2}{Q^4x} \left[(1-y)F_2(x,Q^2) + xy^2F_1(x,Q^2) \right]$$

F₁, F₂: structure functions of the hadron

DIS: basics

→ Consider the process of lepton (e, μ , ν) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared: $W^2 = (q + p)^2$ inelasticity

 $y = \frac{p \cdot q}{p \cdot k}$

 $\begin{array}{l} \text{Bjorken x} \\ x = \frac{-q^2}{2p \cdot q} \\ \text{(minus) photon virtuality} \\ Q^2 = -q^2 \end{array}$

F₁, **F**₂:

structure

functions of

the hadron

→ For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2\sigma}{dQ^2\,dx} = \frac{4\pi\alpha^2}{Q^4x} \left[(1-y)F_2(x,Q^2) + xy^2F_1(x,Q^2) \right]$$

Experiment:

Candidate from NC sample

$$Lepton method$$

$$Q_e^2 = 4E_e E'_e \cos^2(\frac{\theta_e}{2})$$

$$y_e = 1 - \frac{E'_e}{E_e} \sin^2(\frac{\theta_e}{2})$$

$$Hadron method$$

$$Q_h^2 = \frac{1}{1 - y_h} \cdot E_h^2 \sin^2(\theta_h)$$

$$y_h = \frac{E_h}{E_e} \sin^2(\frac{\theta_h}{2})$$

<u>Note</u>: angles measured with respect to the p direction.

5

HERA: e[±](27.5) + p(920), √s=318 GeV

Kinematics:

LHeC - electron kinematics

Kinematics:

LHeC - electron kinematics Q^2/GeV^2 10⁶ E_=7000 GeV Q^2/GeV^2 E.=60 GeV 10⁵ 5000 106 E_=7000 GeV =9010⁴ 200 E.=60 GeV 65 10³ 10^{2} . 9.=170° 500 10 5 Θ.=175° 10 .Θ.=178° .Θ**.=**179° 200 1 179.5 10⁻¹ 10⁻⁵ 10⁻² 10 -7 10 ⁻⁶ 10 ⁻³ 10 ⁻⁴ 10 ⁻¹ 0_=90 104 Х 10 ⁻¹ 10 LHeC - hadronic final state kinematics Acceptance х Q^2/GeV^2 10 ⁶ E₀=7000 GeV E,=60 GeV Au(100)+e(20) ²⁰⁸Pb(2750)+e(60) 10⁵ Large ²⁰⁸Pb(4920)+e(60) 10' Pb(19700)+e(60) 10⁴ 10⁶ acceptance + 10⁵ Q^2 (GeV²) 10³ excellent EM pPb@LHC 10 10^{2} 10³ and HAD $Q^2_{sat,Pb}(x)$ 10^{2} 10 dAu@/Present calorimetry 10 ⊨ RHIC DIS+DY+ 1 =2000 -====000 required. 10⁻⁷ 10⁻⁶ 10 10⁻³ 10⁻⁵ , 10^{−8} 10⁻⁴ x_A 10⁻² 10⁻¹ 10 -7 10⁻² 10 ⁻⁶ 10 -3 10 ⁻⁵ 10 ⁻⁴ 10 ⁻¹

Kinematics:

LHeC - electron kinematics

 Q^2/GeV^2 10⁶ E_=7000 GeV Q^2/GeV^2 E.=60 GeV 10⁵ 5000 106 E_=7000 GeV =9010⁴ E.=60 GeV 10³ 10^{2} 500 0.=175° 10 .Θ,=178° **E**-resolution 0,=179° 200 1 179.5 10⁻¹ 10 ⁻⁶ 10⁻⁵ 10 ⁻³ 10⁻² 10 -7 **10**⁻⁴ 10 ⁻¹ 0_=90 104 Х 10 ⁻¹ 10 LHeC - hadronic final state kinematics Acceptance х Q^2/GeV^2 10 ⁶ E₀=7000 GeV E,=60 GeV **Au(100)+e(20**) ²⁰⁸Pb(2750)+e(60) 10⁵ Large ²⁰⁸Pb(4920)+e(60) 10' ^יPb(19700)+e(60) 10⁴ 10⁶ acceptance + 10⁵ Q^2 (GeV²) 10³ excellent EM pPb@LHC 10 10² 10³ and HAD $Q_{sat,Pb}^{2}(x)$ 10^{2} 10 dAu@Present calorimetry 10 ⊨ RHIC DIS+DY+ 1 <u></u>=2000. <u>,=</u>5000 required. 10⁻⁷ 10⁻⁶ 10 10⁻³ 10⁻⁵ , 10^{−8} 10⁻⁴ x_A 10⁻² 10⁻¹ 10 -7 10⁻² 10 ⁻⁶ 10 -3 10 ⁻⁵ 10 ⁻⁴ 10 ⁻¹

DIS: parton model

DIS: parton model

DIS: QCD corrections

→ The parton model receives corrections from the fact that partons radiate: PDFs evolve with scale Q, DGLAP evolution equations.

→ PDFs are unknown, non-perturbative quantities but we know its perturbative evolution (at leading logarithmic accuracy). They have to be extracted from data. $q(x) = \int \frac{d\lambda}{2\pi} e^{i\lambda x} \left\langle P \left| \bar{\psi}(0) \not = \psi(\lambda n) \right| P \right\rangle$

DIS: QCD corrections

→ PDFs are unknown, non-perturbative quantities but we know its perturbative evolution (at leading logarithmic accuracy). They have to be extracted from data. $q(x) = \int \frac{d\lambda}{2\pi} e^{i\lambda x} \left\langle P \left| \bar{\psi}(0) \not = \psi(\lambda n) \right| P \right\rangle$

DIS: virtual plus real

When we consider
 radiation from initial state
 (before a hard scattering
 σ_h), both real and virtual
 correction appear:

10

→ They combine into a IR finite but collinerly divergent cross section: $\alpha_{c}C_{E} \int_{Q^{2}}^{Q^{2}} dk_{z}^{2} \int_{1}^{1} dz$

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{\rm s} C_F}{\pi} \underbrace{\int_0^\infty \frac{dk_t^2}{k_t^2}}_{\text{infinite}} \underbrace{\int_0^1 \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]}_{\text{finite}}$$

→ The collinear divergence is absorbed in a redefinition of the PDFs putting a cut-off: the independence of its choice leads to DGLAP.

DIS: virtual plus real

B) BFKL, small **x**: $\int_{x_n}^{x_0} dP_{n-1} \int_{x_{n-1}}^{x_0} dP_{n-2} \dots \int_{x_2}^{x_0} dP_1 \propto \left[\frac{\alpha_s N_c}{\pi} \ln \frac{x_0}{x_n}\right]^n$

• Both of them lead to a gluon distribution at small x behaving like $xg(x,Q^2) \propto x^{-\lambda}$ at fixed Q^2 , $\lambda \approx 0.2$ -0.3 in data.

Massive quarks:

• Massive quarks do not have a collinear divergence (dead cone effect).

• The treatment of DGLAP evolution including massive quarks is an open issue, see e.g. 1510.02491.

• FFNS: fixed number of massless species in evolution, HQ generated radiatively, good close to mass threshold, misses $ln^n(Q^2/m_{HQ}^2)$.

• ZM-VFNS: variable number of massless species in evolution when increasing Q², captures $ln^{n}(Q^{2}/m_{HQ}^{2})$, bad at threshold.

• Matching of both schemes: GM-VFNS, requires matching between parts that are exactly computed (massive matrix elements) and the massless evolution, several recipes.

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 1. Basics of DIS.

12

DIS on nuclei:

$$R_{F_2}^A(x, Q^2) = \frac{F_2^A(x, Q^2)}{AF_2^{\text{nucleon}}(x, Q^2)}$$

- R=I indicates the absence of nuclear effects.
- R≠I discovered in the early 70's, significant beyond isospin effects.
- Each region demands a different explanation. $R_{F_2}^A(x,Q^2) = \frac{F_2^A(x,Q^2)}{AF_2^p(x,Q^2)}$

Bound nucleon

 free nucleon: search for process independent
 nPDFs that realise this condition, assuming collinear factorisation.

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
Nuclear PDFs, obeying Usual perturbative coefficient functions
$$^A(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2) \quad R = \frac{f_i/A}{Af_{i/p}} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}}$$

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 1. Basics of DIS.

 f_i^{p}

nPDFs for HIC:

• Lack of data \Rightarrow large

uncertainties for the nuclear glue at small scales and x: problem for benchmarking in HIC in order to extract 'medium' parameters.

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 1. Basics of DIS.

Hadron structure:

- I. Basics of DIS.
- 2. Determination of (n)PDFs.
- 3. Inclusive and exclusive diffraction.
- 4. Spin.
- 5. Small-x physics in DIS.
- 6. Outlook.

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].
- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

PDFs, or nuclear effects on them, parametrised at initial scale $Q_0 \gg \Lambda_{QCD}$ employing sum rules (parametrisation biases)

PDFs, or nuclear effects on them, parametrised at initial scale $Q_0 \gg \Lambda_{QCD}$ employing sum rules (parametrisation biases)

DGLAP evolution, available up to NNLO, N³LO ongoing PDFs at all required scales

 One of the most standard procedures in HEP: development of fast (public) tools for evolution and computation of observables (xFitter, APFEL, ApplGrid, ...).

- Problems known by the proton community.
- Its aim is extracting PDFs from data, assuming that collinear factorisation works.

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

Extraction of PDFs:

Uncertainty estimation:

• Hessian method: first order expansion around minimum χ^{2}_{0} .

$$\chi^{2} \approx \chi_{0}^{2} + \sum_{ij} \delta a_{i} H_{ij} \delta a_{j} \quad H_{ij} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}} \Big|_{a=a^{0}} \quad \chi^{2} \approx \chi_{0}^{2} + \sum_{i} z_{i}^{2} + z_{i}^$$

$$(\Delta X)_{\text{extremum}}^{2} \approx \Delta \chi^{2} \sum_{j} \left(\frac{\partial X}{\partial z_{j}} \right)^{2} \qquad (\Delta X^{+})^{2} \approx \sum_{k} \left[\max \left\{ X(S_{k}^{+}) - X(S^{0}), X(S_{k}^{-}) - X(S^{0}), 0 \right\} \right]^{2} \\ (\Delta X^{-})^{2} \approx \sum_{k} \left[\max \left\{ X(S^{0}) - X(S_{k}^{+}), X(S^{0}) - X(S_{k}^{-}), 0 \right\} \right]^{2}$$

- MC method: repeated fits (NN) to many replicas of data.
- Any error analysis is linked to a functional form for the i.c. (NNPDF implies more flexibility, 4 times more paramaters, ~50 to ~400).
 N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

Uncertainty estimation:

• Hessian method: first order expansion around minimum χ^{2}_{0} .

$$\chi^{2} \approx \chi_{0}^{2} + \sum_{ij} \delta a_{i} H_{ij} \delta a_{j} \quad H_{ij} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}} \Big|_{a=a^{0}} \quad \chi^{2} \approx \chi_{0}^{2} + \sum_{i} z_{i}^{2}$$

$$\Delta \chi^{2} \equiv \sum_{i} \frac{\Delta \chi^{2}(z_{i}^{+}) + \Delta \chi^{2}(z_{i}^{-})}{2N} \approx \sum_{i} \frac{(z_{i}^{+})^{2} + (z_{i}^{-})^{2}}{2N} \qquad S_{0} = (0, 0, 0, \dots, 0)$$

$$S_{1}^{\pm} = \pm \delta z_{1}^{\pm} (1, 0, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

- MC method: repeated fits (NN) to many replicas of data.
- Any error analysis is linked to a functional form for the i.c. (NNPDF implies more flexibility, 4 times more paramaters, ~50 to ~400).
 N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.
DIS: legacy from HERA

• Three pQCD-based alternatives to describe ep and eA data

(differences at moderate $Q^2(>\Lambda^2_{QCD})$) and small x):

- \rightarrow DGLAP evolution (fixed order pQCD).
- \rightarrow Resummation schemes (of $[\alpha_{sln}(1/x)]^{n}$ terms).
- → Non linear effects: saturation.

DIS: legacy from HERA

DIS: DGLAP global analysis

 → Fits to as many data as possible: DIS charged lepton and neutrino data, DY, jets, W/Z/γ... ~4200 points, ~3100 from DIS.
 → Present accuracy: NNLO for evolution, NLO for all cross sections (NNLO jets not yet employed). Several groups: CT, MMHT, NNPDF, ABJM, HERAPDF,...

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

DIS: DGLAP global analysis

 → Fits to as many data as possible: DIS charged lepton and neutrino data, DY, jets, W/Z/γ... ~4200 points, ~3100 from DIS.
 → Present accuracy: NNLO for evolution, NLO for all cross sections (NNLO jets not yet employed). Several groups: CT, MMHT, NNPDF, ABJM, HERAPDF,...

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

Resummation:

• Resummation has been suggested (1710.05935) to cure the problem seen in HERA data of a worsening of the PDF fit quality with decreasing x and Q²: the problem lies in F_L .

$$P_{ij}^{N^{k}LO+N^{h}LLx}(x) = P_{ij}^{N^{k}LO}(x) + \Delta_{k}P_{ij}^{N^{h}LLx}(x)$$

$$k = 0, 1, 2, h = 0, 1 \text{ at present}$$

• This approach, and saturation, can be checked at smaller x through the tension between observables: F_2 , F_L , σ_r^{HQ} .

Resummation:

• Resummation has been suggested (1710.05935) to cure the problem seen in HERA data of a worsening of the PDF fit quality with decreasing x and Q²: the problem lies in F_L .

• Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.

- Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.
- Inclusive measurements in ep largely improve the situation, plus new possibilities: full flavour decomposition, top, intrinsic charm,...

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

- Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.
- Inclusive measurements in ep largely improve the situation, plus new possibilities: full flavour decomposition, top, intrinsic charm,...

- Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.
- Inclusive measurements in ep largely improve the situation, plus new possibilities: full flavour decomposition, top, intrinsic charm,...

nPDFs:

nPDFs:

Available sets:

SET		HKN07 PRC76 (2007) 065207	EPS09 JHEP 0904 (2009) 065	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016) 085037	KAI5 PRD93 (2016) 014036	EPPS I 6 EPJC C77 (2017) I 63	
data	eDIS	~	~	~	~	~	~	
	DY	~	✓	✓	 ✓ 	✓	 ✓ 	
	π٥	×	 Image: A set of the set of the	>	 	×		
	vDIS	×	×	>	×	×	✓	
	pPb	×	×	×	×	×	✓	
# data		1241	929	1579	740	1479	1811	
order		NLO	NLO	NLO	NLO	NNLO	NLO	
proton PDF		MRST98	CTEQ6.1	MSTW2008	~CTEQ6.I	JR09	CT14NLO	
mass scheme		ZM-VFNS	ZM-VFNS	GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS	
comments		Δχ ² =13.7, ratios, <u>no</u> <u>EMC for</u> <u>gluons</u>	Δχ ² =50, ratios, <u>huge</u> <u>shadowing-</u> <u>antishadowing</u>	Δχ ² =30, ratios, <u>medium-modified</u> <u>FFs for π⁰</u>	Δχ ² =35, PDFs, valence <u>flavour</u> <u>sep., not enough</u> <u>sensitivity</u>	PDFs, <u>deuteron</u> <u>data included</u>	$\Delta \chi^2 = 52$ flavour sep., ratios, LHC pPb data	

Available sets:

	SET	HKN07 PRC76 (2007)	EPS09 JHEP 0904	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016)	KAI5 PRD93 (2016)	EPPS I 6 EPJC C77 (2017) 163	
	• Cent	rality		074020 ✔	085057	V1+030	(2017)105	
	depend	lence (E	:PS09s)	✓	~	✓	~	
4	the A dependence of			✓	✓	×	✓	
-the A-		sependence of		>	×	×	✓	
	• Soveral models		×	×	×	✓		
– provide – FGS, Fer		e it:Vogt et al., erreiro et al.,		1579	740	1479	1811	
				NLO	NLO	NNLO	NLO	
				MSTW2008	~CTEQ6.1	JR09	CT14NLO	
mass scheme		ZM-VFNS ZM-VFNS		GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS	
comments		Δχ ² =13.7, ratios, <u>no</u> <u>EMC for</u> <u>gluons</u>	Δχ ² =50, ratios, <u>huge</u> <u>shadowing-</u> <u>antishadowing</u>	Δχ ² =30, ratios, <u>medium-modified</u> <u>FFs for π⁰</u>	Δχ ² =35, PDFs, valence <u>flavour</u> <u>sep., not enough</u> <u>sensitivity</u>	PDFs, <u>deuteron</u> <u>data included</u>	$\Delta \chi^2 = 52$ flavour sep., ratios, LHC pPb data	

EPPS16:

 Most Pb data from CHORUS, 30 Pb points from pPb@LHC: fit for a single nucleus not possible.

Experiment	Observable	Collisions	Data points	χ^2	Ref.
SLAC E139 CERN NMC 95, re.	DIS DIS	e^{-} He(4), e^{-} D μ^{-} He(4), μ^{-} D	21 16	$\begin{array}{c} 12.2\\ 18.0 \end{array}$	[69] [70]
CERN NMC 95	DIS	μ^{-} Li(6), μ^{-} D	15	18.4	[71]
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}\text{Li}(6), \mu^{-}\text{D}$	153	161.2	[71]
SLAC E139	DIS	$e^{-}Be(9), e^{-}D$	20	12.9	[69]
CERN NMC 96	DIS	$\mu^{-}Be(9), \mu^{-}C$	15	4.4	[72]
SLAC E139	DIS	$e^{-C(12)}, e^{-D}$	7	6.4	[69]
CERN NMC 95	DIS	$\mu^{-}C(12), \mu^{-}D$	15	9.0	[71]
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}C(12), \mu^{-}D$	165	133.6	[71]
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}D$	16	16.7	[70]
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}Li(6)$	20	27.9	[70]
FNAL E772	DY	pC(12), pD	9	11.3	[73]
SLAC E139	DIS	e^{-} Al(27), e^{-} D	20	13.7	[69]
CERN NMC 96	DIS	$\mu^{-}Al(27), \mu^{-}C(12)$	15	5.6	[72]
SLAC E139	DIS	$e^{-}Ca(40), e^{-}D$	7	4.8	[69]
FNAL E772	DY	pCa(40), pD	9	3.33	[73]
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} D	15	27.6	[70]
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} Li(6)	20	19.5	[70]
CERN NMC 96	DIS	$\mu^{-}Ca(40), \ \mu^{-}C(12)$	15	6.4	[72]
SLAC E139	DIS	e^{-} Fe(56), e^{-} D	26	22.6	[69]
FNAL E772	DY	e^{-} Fe(56), e^{-} D	9	3.0	[73]
CERN NMC 96	DIS	μ^{-} Fe(56), μ^{-} C(12)	15	10.8	72
FNAL E866	DY	pFe(56), pBe(9)	28	20.1	[74]
CERN EMC	DIS	μ^- Cu(64), μ^- D	19	15.4	[75]
SLAC E139	DIS	e^{-} Ag(108), e^{-} D	7	8.0	[69]
CERN NMC 96	DIS	μ^{-} Sn(117), μ^{-} C(12)	15	12.5	[72]
CERN NMC 96, Q^2 dep.	DIS	μ^{-} Sn(117), μ^{-} C(12)	144	87.6	[76]
FNAL E772	DY	pW(184), pD	9	7.2	[73]
FNAL E866	DY	pW(184), pBe(9)	28	26.1	[74]
CERN NA10*	DY	$\pi^{-}W(184), \pi^{-}D$	10	11.6	[49]
FNAL E615★	DY	$\pi^+W(184), \pi^-W(184)$	11	10.2	[50]
CERN NA3*	DY	π^{-} Pt(195), π^{-} H	7	4.6	[48]
SLAC E139	DIS	e ⁻ Au(197), e ⁻ D	21	8.4	[69]
RHIC PHENIX	π^0	dAu(197), pp	20	6.9	[28]
CERN NMC 96	DIS	$\mu^{-}\text{Pb}(207), \mu^{-}\text{C}(12)$	15	4.1	[72]
CERN CMS*	W±	pPb(208)	10	8.8	[43]
CERN CMS*	Z	pPb(208)	6	5.8	[45]
CERN ATLAS*	Z	pPb(208)	7	9.6	[46]
CERN CMS*	dijet	pPb(208)	7	5.5	[34]
CERN CHORUS*	DIS	$\nu Pb(208), \overline{\nu} Pb(208)$	824	998.6	[47]
Total			1811	1780	

EPPS16:

$Q^2 = 10 \text{ GeV}^2$

nCTEQ15 vs.
 EPPS16: note
 the
 parametrisation
 bias.

EPPS16:

$Q^2 = 10 \text{ GeV}^2$

nCTEQ15 vs.
 EPPS16: note
 the
 parametrisation
 bias.

 Presently available LHC
 data seem not to
 have a large
 effect: large-x
 glue
 (baseline=no V, no LHC data).

Nuclear PDFs at EICs:

- Unpolarised nuclear PDFs are very poorly known, particularly for $x < 10^{-2}$.
- Inclusive measurements in eA largely improve the situation, plus new possibilities: flavour decomposition (but u-d challenging), fits for a single nucleus, release assumptions in unknown regions,...

EPPS16* + EIC (inclusive + charm) EPPS16* + EIC (inclusive only) EPPS16*

- Improves uncertainties substantially out to 10-4
- Shrinks uncertainty band by factors 4-8
- Charm: no additional constraint at low-x but dramatic impact at large-x
- Highest EIC √s is key for low-x reach

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

Nuclear PDFs at EICs:

- Unpolarised nuclear PDFs are very poorly known, particularly for $x < 10^{-2}$.
- Inclusive measurements in eA largely improve the situation, plus new possibilities: flavour decomposition (but u-d challenging), fits for a single nucleus, release assumptions in unknown regions,...

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

u-d separation in eA:

The effect of LHeC pseudodata

- Why it's so hard to pin down the flavor dependence?
- Take the valence up-quark distribution u_V^A as an example:

$$u_{V}^{A} = \frac{Z}{A} R_{u_{V}} u_{V}^{\text{proton}} + \frac{A - Z}{A} R_{d_{V}} d_{V}^{\text{proton}}$$

H. Paukkunen

• Write this in terms of average modification R_V and the difference δR_V

$$R_{\rm V} \equiv \frac{R_{u_{\rm V}} u_{\rm V}^{\rm proton} + R_{d_{\rm V}} d_{\rm V}^{\rm proton}}{u_{\rm V}^{\rm proton} + d_{\rm V}^{\rm proton}}, \qquad \delta R_{\rm V} \equiv R_{u_{\rm V}} - R_{d_{\rm V}}$$

• The effects of flavour separation (i.e. δR_V here) are suppressed in cross sections — but also so in most of the nPDF applications.

> < 回 > < 臣 > < 臣 >

An update on nuclear PDFs at the LHeC

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 2. (n)PDFs.

H. Paukkunen for the LHeC study group

996

$F_{L} \text{ in eA:} \\ \sigma_{r}^{NC} = \frac{Q^{4}x}{2\pi\alpha^{2}Y_{+}} \frac{d^{2}\sigma^{NC}}{dxdQ^{2}} = F_{2} \left[1 - \frac{y^{2}}{Y_{+}} \frac{F_{L}}{F_{2}} \right], \qquad Y_{+} = 1 + (1 - y)^{2}$

- F_L traces the nuclear effects on the glue (Cazarotto et al '08): most sensitive to deviations wrt fixed order perturbation theory.
- Uncertainties in the extraction of F_2 due to the unknown nuclear effects on F_L of order 5 % (> stat.+syst.) \Rightarrow either measure F_L or

- I. Basics of DIS.
- 2. Determination of (n)PDFs.
- 3. Inclusive and exclusive diffraction.
- 4. Spin.
- 5. Small-x physics in DIS.
- 6. Outlook.

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].
- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

Diffraction:

At HERA, ~10 % of the events have a pseudorapidity gap in hadronic activity (or intact detected proton):
 diffractive. LPS.

• They measure the probability of the proton to remain intact in the scattering, while producing some activity far from the proton: exchange of a colourless object, called *Pomeron*.

Diffractive event in ZEUS at HERA

Diffraction:

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared: $W^2 = (q + p)^2$ inelasticity $y = \frac{p \cdot q}{p \cdot k}$ Bjorken x $x = \frac{-q^2}{2p \cdot q}$ (minus) photon virtuality $Q^2 = -q^2$

Diffractive DIS variables:

$$\xi \equiv x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$
$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

 $t = (p - p')^2$

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

4-momentum transfer squared

Diffractive SF and factorisation:

$$\frac{d^{3}\sigma^{D}}{dx_{IP} dx dQ^{2}} = \frac{2\pi\alpha_{\rm em}^{2}}{xQ^{4}} Y_{+} \sigma_{r}^{D(3)}(x_{IP}, x, Q^{2})$$
$$\sigma_{r}^{D(3)} = F_{2}^{D(3)} - \frac{y^{2}}{Y_{+}} F_{L}^{D(3)}$$
$$Y_{+} = 1 + (1 - y)^{2}$$
$$F_{T,L}^{D(3)}(x, Q^{2}, x_{IP}) = \int_{-\infty}^{0} dt F_{T,L}^{D(4)}(x, Q^{2}, x_{IP}, t)$$
$$F_{2}^{D(4)} = F_{T}^{D(4)} + F_{L}^{D(4)}$$

Diffractive SF and factorisation:

$$\frac{d^{3}\sigma^{D}}{dx_{IP} dx dQ^{2}} = \frac{2\pi\alpha_{em}^{2}}{xQ^{4}} Y_{+} \sigma_{r}^{D(3)}(x_{IP}, x, Q^{2})$$
$$\sigma_{r}^{D(3)} = F_{2}^{D(3)} - \frac{y^{2}}{Y_{+}} F_{L}^{D(3)}$$
$$Y_{+} = 1 + (1 - y)^{2}$$
$$F_{T,L}^{D(3)}(x, Q^{2}, x_{IP}) = \int_{-\infty}^{0} dt F_{T,L}^{D(4)}(x, Q^{2}, x_{IP}, t)$$
$$F_{2}^{D(4)} = F_{T}^{D(4)} + F_{L}^{D(4)}$$

• For fixed t, x_P , collinear factorisation holds (Collins): diffractive PDFs expressing the conditional probability of finding a parton with momentum fraction β with the proton remaining intact.

$$d\sigma^{ep \to eXY}(x, Q^2, x_{IP}, t) = \sum_i f_i^D \otimes d\hat{\sigma}^{ei} + \mathcal{O}(\Lambda^2/Q^2)$$

Diffractive PDFs:

• To extract DPDFs, an additional assumption is made: Regge factorisation that seems to work for not large too x_P .

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 3. Diffraction.

DPDFs at **EICs**:

• Limitations at HERA (check of Regge factorisation, size and shape of the diffractive glue) can be overcome with EICs:

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 3. Diffraction.

Diffraction in ep and shadowing:

nDPDFs at EICs:

• Diffractive PDFs have never been measured in nuclei, where incoherent diffraction becomes dominant at relatively small -t.

Exclusive production:

• Exclusive production gives a 3D scan of the hadron/nucleus: gluon GPDs with vector mesons, quark GPDs with DVCS. It can be studied for Q=0 in UPCs, precision and O>0 in EICs.

$$\int \frac{\mathrm{d}w^{-}}{2\pi} e^{-i\xi P^{+}w^{-}} \left\langle P' \middle| T\overline{\psi}_{j} \left(0, \frac{1}{2}w^{-}, \mathbf{0}_{\mathrm{T}} \right) \frac{\gamma^{+}}{2} \psi_{j} \left(0, -\frac{1}{2}w^{-}, \mathbf{0}_{\mathrm{T}} \right) \middle| P \right\rangle_{\mathrm{c}}$$
Off-diagonal matrix elements, appear in amplitudes.

Exclusive production:

• Exclusive production gives a 3D scan of the hadron/nucleus: gluon GPDs with vector mesons, quark GPDs with DVCS. It can be studied for Q=0 in UPCs, precision and Q>0 in EICs.

pQCD for $ep \rightarrow eJ/\psi p$:

- It should not be the gluon PDF but the GPD:
- NLO estimated, not complete.
- Real part via dispersion relations:

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 3. Diffraction.

 $\lambda(Q^2) = \partial \left[\ln(xg) \right] / \partial \ln(1/x)$

 $\frac{\text{Re}A}{\text{Im}A} \simeq \frac{\pi}{2}\lambda$

The dipole picture:

- Correction to non-diagonal gluon PDF (skewedness) introduced.
- Boosted Gaussian VM WF fitted to leptonic decays.
- qqbarg component in diffraction, not yet in exclusive VM. N.Armesto, 05-07.09.2018 Hadron structure phenomenology at an EIC: 3. Diffraction.

Elastic vector mesons (II):

Incoherent diffraction sensitive to fluctuations: hot spots? that determine the initial stage of HIC, the distribution of MPIs,

. (dn) (qψ/L←qγ)α

10²

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 3. Diffraction.

• The evolution equations for TMDs and GPDs could be tested at the EICs. DGLAP ERBL DGLAP x

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 3. Diffraction.

- I. Basics of DIS.
- 2. Determination of (n)PDFs.
- 3. Inclusive and exclusive diffraction.

4. Spin.

- 5. Small-x physics in DIS.
- 6. Outlook.

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].
- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

Spin physics:

The origin of proton spin has been an open issue for several decades:
 schematically speaking, quarks account for ~30 %, gluons for ~ 20 % (known in a limited x-range), the rest?

Spin physics:

Inclusive
 measurements
 with both e and
 p polarised
 (EIC): huge
 improvement at
 low x.

 $g_1(x,Q^2) + const(x)$ x=5.2 10⁵ (+53) heorv Uncertainty 8.2 10⁵ (+45) 40 EIC projected data: 1.3 104 (+38) √s = 44.7 GeV √s = 63.2 GeV 2.1 104 (+33) √s = 141.4 GeV 30 20 10 DIS data 10^2 Q² (GeV²) 10^3 10

Spin physics:

 Several TMDs to be determined by different observables.

- Beyond inclusive DIS, further possibilities are SIDIS (FFs required), CC,...
- Besides, polarised light nuclei, diffraction,...
- TMD factorisation can be tested in nonpolarised collisions: dijets, charm,... Relation at small x with CGC.

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 4. Spin.

х

- I. Basics of DIS.
- 2. Determination of (n)PDFs.
- 3. Inclusive and exclusive diffraction.
- 4. Spin.
- 5. Small-x physics in DIS.
- 6. Outlook.

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].
- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

Why:

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_s \ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS).
- High density \Rightarrow linear evolution must not hold: saturation, either

perturbative (CGC) or non-perturbative. $\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$

Why:

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_s \ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS).
- High density \Rightarrow linear evolution must not hold: saturation, either

perturbative (CGC) or non-perturbative. $\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$

Small x: inclusive observables

• Simultaneous description of different inclusive observables (with different sensitivities to the gluon and the sea) in DGLAP may show tensions e.g. F_2 and F_L or σ_r^{HQ} if enough lever arm in Q^2 is available.

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 5. Small x.

 $Q^2 = 2.70 \text{ GeV}^2$

 10^{-3}

 $Q^2 = 8.40 \text{ GeV}^2$

10

 $Q^2 = 27 \text{ GeV}^2$

10

Pseudodata

DSSZ

10

x

1.75

0.0

0.0

0.0

Small-x: diffraction

• Diffraction is a promising observable, but uncertainties exist.

Small-x: diffraction

- Diffraction is a promising observable, but uncertainties exist.
- Present saturation models lead to a blackening of the hadron (shrinking of the diffractive peak) and a larger total diffractive cross section in eA.

Small-x: diffraction

- Diffraction is a promising observable, but uncertainties exist.
- Present saturation models lead to a blackening of the hadron (shrinking of the diffractive peak) and a larger total diffractive cross section in eA.

N.Armesto, 05-07.09.2018 - Hadron structure phenomenology at an EIC: 5. Small x.

0.8

0.9

eAu - Saturation Model

eAu - Shadowing Model (LTS) Shadowing Model (LTS)

ep - Saturation Model

0.02

0.018

0.016

0.014

0.012

0.01 0.008

0.004 0.002

1.8

(GeV⁻²)

dσ_{diff}/dM_x²

 $(1/\sigma_{tot})$ 0.006 0.7 0.6 0.5 0.4 0.3 0.2

Q² = 5 GeV²

 $\int Ldt = 1 \text{ fb}^{-1}/A$

15 GeV on 100 GeV

 $x = 1 \times 10^{-3}$

The small system puzzle:

Collective hadronisation

Collective expansion (hydro-like)

Direct photons

Final state interactions (non-hydro)

PbPb	pPb (high mult.)	pp (high mult.)	Refs.
yes	yes	yes	[1–10]
yes	yes	yes	[5, 6, 10– 15]
GC level	GC level except	GC level except	[8, 9, 16,
	Ω	Ω	17]
$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{\rm GC} \approx 1,20-40\%$	$\gamma_s^C < 1, 20-40\%$	[9, 18, 19]
$R_{\rm out}/R_{\rm side}\approx 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	[20–28]
$v_1 - v_7$	$v_1 - v_5$	<i>v</i> ₂ , <i>v</i> ₃	[29–31]
			[32–
			39, 39–43]
$v_2 - v_5$	<i>v</i> ₂ , <i>v</i> ₃	<i>v</i> ₂	[39, 42–
			48]
yes	no	no	[49]
yes	yes	not observed	[50–54]
$4 \approx 6 \approx 8 \approx LYZ'$	' " $4 \approx 6 \approx 8 \approx LYZ$ '	' "4 \approx 6 \approx 8 \approx LYZ	' [39, 55–64,
+higher harmonics	+higher harmonics		64–69]
yes	yes	not measured	[41, 65, 67,
	-		70–76]
yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[40, 77, 78]
n = 2 - 4	not measured	not measured	[79, 80]
yes	yes	yes	[81-84]
yes	not measured	yes	[85, 86]
yes	not observed	not observed	[87–107]
yes	yes [108]	not measured	[108–118]
$J/\psi\uparrow,\Upsilon\downarrow$	suppressed	not measured	[108, 118–
			125, 125–
			138]
	PbPb yes yes GC level $\gamma_s^{GC} = 1, 10-30\%$ $R_{out}/R_{side} \approx 1$ $v_1 - v_7$ $v_2 - v_5$ yes yes yes "4 $\approx 6 \approx 8 \approx LYZ'$ +higher harmonics yes yes yes yes yes yes yes ye	PbPbpPb (high mult.)yesyesyesyesgesyesGC levelGC level except Ω $\gamma_s^{GC} \approx 1, 20-40\%$ $R_{out}/R_{side} \approx 1$ $R_{out}/R_{side} \lesssim 1$ $v_1 - v_7$ $v_1 - v_5$ $v_2 - v_5$ v_2, v_3 yesnoyesyes"4 $\approx 6 \approx 8 \approx LYZ$ " +higher harmonicsyesnot measuredyes	PbPbpPb (high mult.)pp (high mult.)yesyesyesyesyesyesgC levelGC level exceptGC level except Ω Ω $\gamma_s^{GC} \approx 1, 20-40\%$ $\gamma_s^{GC} = 1, 10-30\%$ $\gamma_s^{GC} \approx 1, 20-40\%$ $R_{out}/R_{side} \approx 1$ $R_{out}/R_{side} \lesssim 1$ $R_{out}/R_{side} \lesssim 1$ $v_1 - v_7$ $v_1 - v_5$ v_2, v_3 $v_2 - v_5$ v_2, v_3 v_2 yesnonoyesyesnot observed"4 $\approx 6 \approx 8 \approx LYZ$ ""4 $\approx 6 \approx 8 \approx LYZ$ "+higher harmonics+higher harmonicsyesyesnot measuredyes (n = 2, 3)yes (n = 2, 3)not measuredn = 2 - 4not measurednot measuredyesyesnot observedyesyesnot observedyesyesyesnot measuredyesyesnot measuredyesyesnot measuredyesyesnot measuredyesyesnot measuredyesyesnot measured

The small system puzzle:

• Azimuthal correlations extended in η (the ridge) are found in all systems from almost minimum bias pp (10) to central AA (2000) and are describable by viscous relativistic hydro (with suitable ICs):

→ Final state interactions, so
QGP-like physics in all systems?
→ Correlations already present
in the hadron or nucleus wave
functions, as in CGC calculations?

• One way to proceed: go to even smaller systems, ep/eA, down to a point where final state interactions cannot be justified.

- → Correlations appear (e.g. in eA, CGC): evidence of initial state effects?
- → No correlations: evidence of final state interactions?
- Note: preliminary analysis by ZEUS and ALEPH put strong limits on azimuthal 2-particle correlations in ep at HERA and e⁺e⁻ at LEP.

The small system puzzle:

Multiplicity-dependent c_1 {2} and c_2 {2} with increasing η -separation

 $|\Delta \eta| > 2.0$: $c_1\{2\}$ changes sign \rightarrow consistent with momentum conservation.

 $|\Delta \eta| > 2.0$: $c_2\{2\}$ consistent with zero.

- I. Basics of DIS.
- 2. Determination of (n)PDFs.
- 3. Inclusive and exclusive diffraction.
- 4. Spin.
- 5. Small-x physics in DIS.
- 6. Outlook.

Bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Report CERN-2010-002, 45-100, arXiv:1011.5131 [hep-ph].
- J. L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G39 (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
- A.Accardi et al., Electron Ion Collider: The Next QCD Frontier : Understanding the glue that binds us all, Eur. Phys. J.A52 (2016) no.9, 268, arXiv:1212.1701 [nucl-ex].

Finally:

Finally:

